A Numerical Method for the Solution of Two- Dimensional Inverse Heat Conduction Problems
نویسندگان
چکیده
A numerical method for the solution of inverse heat conduction problems in two-dimensional rectangular domains is established and its performance is demonstrated by computational results. The present method extends Beck's' method to two spatial dimensions and also utilizes future times in order to stabilize the ill-posedness of the underlying problems. The approach relies on a line approximation of the elliptic part of the parabolic differential equation leading to a system of one-dimensional problems which can be decoupled.
منابع مشابه
A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions
This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...
متن کاملA novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem
Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...
متن کاملA TRANSIENT TWO-DIMENTIONAL INVERSE ESTIMATION OF THE METAL-MOLD HEAT TRANSFER COEFFICIENT DURING SQUEEZE CASTING of AL-4.5WT%CU
In this paper, a transient, two-dimensional and nonlinear inverse heat conduction problem in solidification process is considered. Genetic algorithm is applied for the identification of the interfacial heat transfer coefficients during squeeze casting of commercial aluminum alloy (Al-4.5wt%Cu) by assuming a priori information regarding the functional form of the unknown heat transfer coefficien...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملNon-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کامل